solving differential equations

[SQA] 1. The graph of y = g(x) passes through the point (1,2).

If
$$\frac{dy}{dx} = x^3 + \frac{1}{x^2} - \frac{1}{4}$$
, express *y* in terms of *x*.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2		
	4	С	NC	C18		1999 P1 Q11		
¹ x ² y ³ t ⁴ c	•1 x^{-2} stated or implied by • ² or • ³ •2 $y = \int (x^3 + x^{-2} - \frac{1}{4}) dx$ or the appearance of any term of $\frac{1}{4}x^4 - \frac{1}{4}x - x^{-1}$ •3 the remaining two terms •4 $c = 3$							

[SQA] 2. For all points on the curve y = f(x), f'(x) = 1 - 2x.

If the curve passes through the point (2, 1), find the equation of the curve.

4

4

Part	Marks	Level	Calc.	Content	Answer	U2 OC2
	3	C	NC	C18		1990 P1 Q8
• ¹ j • ² x • ³ +	$(1-2x)dx$ $x-x^{2}$ $+c$ $= 3$	=				

[SQA] 3. A curve with equation y = f(x) passes through the point (2, -1) and is such that $f'(x) = 4x^3 - 1$.

Express f(x) in terms of x.

5

Part	Marks	Level	Calc.	Content	Answer	U2 OC2			
	5	С	NC	C18		1991 P1 Q10			
• ¹ ∫	• $\int (4x^3 - 1) dx = \dots$								
•3 +	$\frac{x-x}{x^{2}+c}$								
•4 f	f(2) = 14 + c								
• ⁵ c	5 c = -15								

[SQA] 4. A curve for which $\frac{dy}{dx} = 3x^2 + 1$ passes through the point (-1,2).

Express y in terms of x.

Part	Marks	Level	Calc.	Content	Answer	U2 OC2	
	4	С	NC	C18		1992 P1 Q4	
• $\int (3x^2 + 1) dx$ • $x^3 + x$ • $x^3 + c$ • $y = x^3 + x + 4$							

[SQA] 5. A curve for which $\frac{dy}{dx} = 6x^2 - 2x$ passes through the point (-1,2).

Express y in terms of x.

λC2									
1 Q10									
1 0 3 2									
$y = 2x^2 - x^2$									
$y = 2x^3 - x^2 + k$ and substituting									
<i>k</i> = 5									

[SQA] 6. The graph of y = f(x) passes through the point $(\frac{\pi}{9}, 1)$.

If $f'(x) = \sin(3x)$ express *y* in terms of *x*.

U3 OC2 Part Marks Level Calc. Content Answer $y = -\frac{1}{3}\cos(3x) + \frac{7}{4}$ 2000 P1 Q8 NC C18, C23 4 A/B •¹ $y = \int \sin(3x) dx$ stated or implied by •¹ ss: know to integrate •² pd: integrate •³ ic: interpret $(\frac{\pi}{9}, 1)$ •⁴ pd: process •² $-\frac{1}{3}\cos(3x)$ •³ $1 = -\frac{1}{3}\cos(\frac{3\pi}{9}) + c$ or equiv. •⁴ $c = \frac{7}{6}$

3

4

4

[SQA] 7. A curve for which $\frac{dy}{dx} = 3\sin(2x)$ passes through the point $\left(\frac{5\pi}{12}, \sqrt{3}\right)$.

Find y in terms of x.

Part	Marks	Level	Calc.	Content	Answer	U3 OC2
	4	A/B	CN	C18, C23	$y = -\frac{3}{2}\cos(2x) + \frac{1}{4}\sqrt{3}$	2001 P2 Q10
 •¹ pd: integrate trig function •² pd: integrate composite function •³ ss: use given point to find "c" •⁴ pd: evaluate "c" 					• ¹ $\int 3\sin(2x) dx$ stated or in • ² $-\frac{3}{2}\cos(2x)$ • ³ $\sqrt{3} = -\frac{3}{2}\cos(2 \times \frac{5}{12}\pi) +$ • ⁴ $c = \frac{1}{4}\sqrt{3} (\approx 0.4)$	ıplied by ● ² c

[END OF QUESTIONS]